ENERGY DIPLOMACY THE ECONOMIC AND ENVIRONMENTAL IMPACTS OF AN OIL SHORTAGE

Presented by Shane Vyskocil, Economic Associate and Harry Walsh, Economic Associate

what does **REMI** say? sm

- Background on the Strait of Hormuz and recent tensions
- Previous REMI applications to energy diplomacy
- Discussion of alternatives to bypass the Strait
- Model Demonstration

What is the Strait of Hormuz?

- The Strait of Hormuz is a 21 mile wide strait that connects the Persian Gulf to the Gulf of Oman
- According to the EIA, the Strait of Hormuz is the world's most important strategic oil chokepoint
- Chokepoints are "narrow channels along widely used global sea routes that are critical to global energy security" (EIA, 2019).

Source: Goran tek-en via Wikimedia Commons, edited for emphasis

Oil exports through the Strait of Hormuz

- In 2018, the Strait's daily oil flow averaged 21 million barrels per day (b/d)
 - One-third of total global seaborne traded oil
 - More than 25% of global liquefied natural gas trade
 - About 21% of global petroleum liquids consumption

Crude oil, condensate, and petroleum products transported through the Strait of Hormuz

Tensions with Iran

 Iran has threatened to close the Strait of Hormuz, a response to American sanctions imposed after withdrawing from the Iran deal

 In June, two tankers
were targeted in an attack attributed to the Iranian military

In July, a British tanker
was seized by the
Iranian Navy

Source: US Navy

Tensions with Iran

Military tensions have increased in the region

- In June, the Iranian Revolutionary Guard shot down a U.S. Navy surveillance drone operating above the Strait of Hormuz
- The U.S. approved retaliatory strikes on Iran, but aborted the effort minutes before the strikes were scheduled
- The U.S. has requested allies take part in a naval mission to protect shipping in the Strait of Hormuz

- What would the impacts be if the United States increased natural gas exports to fill international demand from a disruption at the Strait?
- United States natural gas production history:
 - 2005: 18,051bcf produced
 - 2009: 21,577bcf produced
 - 2018: 30,438bcf produced

- In 2012, REMI and RBAC, Inc., collaborated on a report that analyzed different export scenarios of Liquefied Natural Gas (LNG), finding:
 - Effects on domestic natural gas prices
 - US macroeconomic impacts
- Baseline of 3 BCF/day exported compared to:
 - High LNG export scenario (6 BCF/day)
 - Low LNG export scenario (0 BCF/day)

- RBAC's GPCM Natural Gas Market Forecasting System analyzed how an increase in LNG Exports would effect U.S. natural gas prices
 - Exports would increase international demand for U.S. LNG and raise prices for domestic consumers

□ The REMI's PI+ model found LNG exports:

- To have a short-term positive economic impact due to initial infrastructure investments
- To have a negative economic impact in the long run, due to higher domestic natural gas prices

U.S. imports from the Strait of Hormuz

In 2018 the U.S. imported 1.4 million barrels per day through the Strait

- 18% of total U.S. crude oil and condensate imports
- 7% of total U.S. petroleum liquids consumption

Volume of crude oil and condensate transported through the Strait of Hormuz by destination

Source: U.S. Energy Information Administration, based on tanker tracking data published by ClipperData, Inc.

Oil Price Elasticity

- The Federal Reserve published a report which summarized the price elasticities of oil in existing literature
- A review of 30 papers that reported price elasticities (excluding 3 outliers) gave the following data:

Mean	-0.14
Median	-0.12

Caldara, Dario, Michele Cavallo, and Matteo Iacoviello (2016). Oil Price Elasticities and Oil Price Fluctuations. International Finance Discussion Papers 1173.

Projected Price Change from Closure

- Since 7% of U.S. petroleum liquids consumption comes from the Strait of Hormuz:
 - A 7% forced supply decrease from a closure would cause a projected price increase of 50% of petroleum liquids

$$E_d = \frac{\Delta Q/Q}{\Delta P/P}$$

$$\frac{\Delta P}{P} = \frac{1}{E_d} \frac{\Delta Q}{Q}$$

$$\frac{\Delta P}{P} = (-7.14)(-0.07) = +0.50$$

Proposed Alternatives: Bypass the Strait of Hormuz

- Long term closure could lead to pipeline expansions to bypass the Strait
 - The Abu Dhabi Crude Oil Pipeline in the UAE was opened in 2012 for this purpose
- Saudi Arabia plans to expand the East-West pipeline that connects the Mideast gulf to the Red Sea:
 - This would increase the pipeline's capacity by 2 million b/d
- The expansion is expected to be operational by 2023

Source: U.S. Energy Information Administration

Proposed Alternatives: Bypass the Strait of Hormuz

- Only Saudi Arabia and the UAE have the available pipelines and additional capacity to bypass the Strait of Hormuz
 - EIA reports that pipelines in the region have 3.8 million b/d of unused capacity for export
- Assuming the U.S. proportion of these exports remains constant:
 - 6.76% of this capacity could be used to ship oil to the U.S. (256,880 b/d)

Proposed Alternatives: Bypass the Strait of Hormuz

□ If the United States utilized this capacity of 256,880 b/d:

- Assuming 20 million b/d of U.S. petroleum liquids consumption, there would now be a forced supply decrease of about 5.7% (1,143,120 b/d)
- This would lead to a price increase of about 40.8%

$$E_d = \frac{\Delta Q/Q}{\Delta P/P}$$

$$\frac{\Delta P}{P} = \frac{1}{E_d} \frac{\Delta Q}{Q}$$

$$\frac{\Delta P}{P} = (-7.14)(-0.057) = +0.408$$

Model Demonstration

Scenario 1

Concept: Initial impact from closure of the Strait of Hormuz

Methodology

50% Increase in Fuel Cost (liquidized petroleum)

From 7% Supply Decrease

Scenario 2

Concept: Impact of Strait of Hormuz closure with utilization of existing pipeline capacity

Methodology

- 50% upward revision of baseline fuel costs (petro)
 - Starting 2020 with Hormuz closure
- 9.2% downward revision in simulation fuel costs
 - Starting 2021 in reaction to closure

 Concept: Partial consumption substitution from oil to natural gas as fuel due to supply constraint

Methodology

- Decrease in imports of extracted oil
 - Representative of 18% of US crude oil imports (Hormuz)
- Increase in demand for natural gas extraction
 - 4:1 ratio of reallocation, split between residential and industry demand