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Abstract 

Disruptions to transportation networks are inevitable. When road networks are not resilient, i.e., 

they do not recover rapidly from disruptions, these unpredictable events can cause significant 

delays that may not be proportional to the extent of the disruption. Enhancing transportation 

system resilience can help mitigate the consequences of disruptions, however, required 

investments are difficult to justify given the low probability of event occurrence. This paper 

calculates economic implications of unmitigated random disruptions in urban road systems. We 

modeled delays in transportation network and demonstrated how resilience can be integrated 

with the microeconomic transportation planning model, REMI TranSight. The model was 

applied to 10 cities in the United States to calculate gross domestic product (GDP) and several 

other economic indicators. A baseline scenario was tested where economic impact was assumed 

to be proportional to the magnitude of disruptive events. Then, a test scenario was assessed, 

where the magnitude of disruption was used to calculate additional delays in transportation 

networks that were then integrated in REMI model. Results show that losses in GDP were far 

more pronounced in the case scenario as compared to the baseline. The economic output tends to 

rebound 1-2 years following disruptive event. We conclude that support for investment decisions 

on improvements in transportation networks should be based on a framework that utilizes 

resilience, quantified in terms that are compatible with standard practice, and scenarios to test the 

implications of topological attributes of transportation networks.  

Introduction 

Currently, most mandated development-related transportation planning is intended to prepare for 

frequently occurring and observable disruptions, while unpredictable events that have not yet 

occurred attract less attention. The current norm for improving transportation networks and 

remedying the economic impact of delays is undertaken through management for specific threats 

to reduce the travel time and improve efficiency. This emphasis on travel time and the monetary 

value of its duration allows prospective projects to enter the realm of cost-benefit analysis but 

carries the short-coming of representing only observable and predictable events. Recent 

experience clearly show that focus on resilience, defined as ability to recover from both 

predictable and unpredictable disruptions and adapt (NAS, 2012 Linkov and Trump, 2019) is 
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necessary, but economic impact of lack of resilience in transportation networks has not been 

studied.  This paper is the first to provide fusion of well-established Regional Economic Model 

(TranSight 4.2 User Guide, 2018) with the transportation network resilience model developed by 

Ganin et al (2017) and applied to multiple cities in the USA.  This explicit integration of 

temporal resilience model linked with regional economic model allows comparative evaluation 

of multiple cities with respect to the impact of resilience rather than attempts to model just one 

city at a time. 

Transportation system investments are principally motivated by the goal of reducing 

delay (Belenky, 2011) and, by nature of modeling norms and associated metrics, projects are 

designed to do so by targeting improvements in efficiency. Current practice is to evaluate road 

performance with Level of Service (LoS), or similar measure of efficiency, during the worst 

traffic of an average day and when the whole road network is running as expected (Highway 

Capacity Manual, 5th Edition, 2010).  

The transportation field recognizes that variances in expected travel times have a cost, even 

when not incurred, as they need to be planned for by travelers.  This is known as the Value of 

Reliability (U.S. Department of Transportation, 2016). While Value of Reliability is well 

researched and methodologies to estimate it do exist (Fosgerau and Karlström, 2010; Lam and 

Small, 2001), no standardized method has yet been adopted in the US (U.S. Department of 

Transportation, 2016). These costs may not be consistent across sectors and some workers may 

have more flexibility in where and when they work than others. These costs may also fluctuate 

with the amplitude of the delay, with small delays potentially being negligible, though more 

research is needed (Fosgerau et al., 2007; Mackie et al., 2003; U.S. Department of 

Transportation, 2016).  A more standard metric used in planning is Value of Time (VOT), which 

is generally calculated on the assumption that variance in travel time from one scenario to 

another is certain and value is linearly calculated based on wage rates (U.S. Department of 

Transportation, 2016).  Both of these methods fail to capture the costs of unpredictable delays, 

which cannot be accounted for in schedules and may have different costs than those associated 

with time passed in traffic.  

The realm of possibilities between average traffic conditions and unpredictable disruptions, such 

as natural disasters, is comprised of events that can have non-trivial disruptions to mobility, and 

yet are outside the realm of planning and analysis. These events may be unpredictable in space 

and time and unknown in nature to the point of being random. Therefore, these unpredictable 

events should be the focus of resilience inquiries here and elsewhere (Ganin et al., 2019, 2017). 

Whereas mitigating risk of disruption (i.e., strengthening key nodes and links in transportation 

networks) is appropriate for specific hazards, events that are highly uncertain in space and time 

challenge our ability to characterize vulnerability to them and implement effective risk 

mitigation measures. Cost concerns ensure that completely minimizing physical risk at one 

location may inherently limit our ability to reduce risk elsewhere. Similarly, hardening a 

transportation system against the risk of new types of disruptions, such as cyber-attacks on 

Intelligent Transportation Systems (ITS), is difficult because the potential range of risk is too 

vast to be effectively predicted (Ganin et al., 2019). Network-wide management is therefore 

more appropriate than location-specific solutions, where the objective is to keep people and 

goods flowing through the network in spite of disrupted parts of the network. An apt measure of 

a network’s performance with respect to that objective is resilience. Resilience in transportation 

is the ability to function despite disruption and/or to promptly recover after the disruption. 
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Across various contexts, there is a growing recognition that lack of resilience can have grave 

socioeconomic consequences, especially in the context of damaged interconnected infrastructure 

(Florin and Linkov, 2016). Such is the finding of a recent World Bank report on infrastructure as 

a key enabler of economies and the macroeconomic impacts of not being resilient (Hallegatte et 

al., 2019). Presidential Policy Directive 21 - Critical Infrastructure Security and Resilience 

(Obama, 2013) formalized the call to enhance the nation’s critical infrastructure functioning and 

resilience by recognizing the importance of operable critical infrastructure, including 

transportation systems. This resilience-related Policy Directive was  focused one of 16 sectors 

that were considered vital to national economic security, public health, and safety (“Critical 

Infrastructure Sectors,” 2019). The current state of practice in transportation planning lends itself 

to the conclusion that advances in resilience research need to be integrated into planning norms 

to help account for uncertain events and emerging risks. Quantitative resilience modeling results 

can be used in tandem with efficiency-driven modeling efforts to conduct tradeoffs among 

multiple objectives in transportation network investment.  

This paper aims to demonstrate that joining resilience analysis with regional economic modeling 

can advance the methodological approach necessary for planning. The extent of socioeconomic 

impacts due to disrupted infrastructure is currently researched, yet the field is limited to 

forecasting or assessing impacts of specific disruptive events. For example, Ham et al. (2005) 

assessed the anticipated economic implications if an earthquake were to occur in the New 

Madrid Seismic Zone in the U.S. Midwest. Ham et al. (2005) concluded that the ensuing 

disruption to U.S. commodity flow could pose significant threat to economic stability and 

recovery at the regional, national, and international scale. Transportation network resilience, 

according to the Ham et al. (2005) context, refers the adaptability of commodity flow such that 

goods can be transported via multiple modes. Similarly, Tatano and Tsuchiya (2008) developed a 

spatial computable general equilibrium (CGE) model to estimate economic losses (e.g., changes 

in the cost of travel time) attributed to earthquake disruption of freight and passenger 

transportation flow. They used the 2004 Niigata-Chuetsu Japan earthquake as a case study, and 

regional economic losses were measured as a function of inter- and intraregional trade (Tatano 

and Tsuchiya, 2008). Pelling et al. (2002) discussed how the 1995 Kobe, Japan earthquake 

increased transportation costs in the region by over 50% and increased the cost of goods in the 

region by 10%. Internationally, the disablement of the Kobe Port halted the import and export of 

goods. Pelling et al. (2002) suggest that disasters possess an “inflationary potential” due to their 

capacity to affect the “production, distribution, marketing, and consumption” functions of 

markets. Cho et al. (2015) show how disruption to critical highway infrastructure, such as 

highway bridge and tunnel damage, can lead to economic losses in the U.S. on a state-by-state 

and industry basis. They conclude that the states and industries that can adapt to disruption suffer 

the least economic loss. Therefore, redundancy in transportation networks can mitigate the 

consequences of a disruptive event. This conclusion is mirrored by Worton (2012), who 

suggested that resilience engineering should focus less on efficiency than the capacity for 

preparedness, recovery, and adaptation (Mattsson and Jenelius, 2015). The shortcomings of 

existing studies on the economic implications of transportation disruptions are twofold: 1) 

resilience is often conflated with potential damages and 2) economic modeling is not 

underpinned by analysis of transportation network topology. 

Resilience planning can integrate economic modeling that is based in transportation network 

analysis. This integration will allow for transportation costs to be associated with travel time 

delays, as delays are a primary contributor to economic impact. The current paper used REMI 
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TranSight (TranSight 4.2 User Guide, 2018), an established economic modeling process that 

uses input-output, computable general equilibrium, econometric and economic geography 

methods. Our application of REMI TranSight reinforced that the lack of resilient transportation 

networks can suffer from non-trivial economic consequences via the delays that they cause to 

travel. Disruption-induced delay results generated by Ganin et al. (2017) were translated to 

economic outcomes by formulating them as inputs to REMI TranSight. This expanded the use of 

travel delay information that is traditionally used in scenario and policy analysis. We introduced 

a process for quantifying the economic implications of resilience or lack thereof, which can be 

used to progress a planning approach that explicitly considers resilience. The method is 

demonstrated for ten U.S. cities. The methodology used in this study can be instrumental in the 

transition from current risk-based planning to true resilience planning, supported by economic 

analysis and subsequent selection of management alternatives. 

 

Methods: Integration of Transportation Network Research and 

Economic Modeling 

This paper joins two independently developed and documented models to assess economic 

impacts of resilience in transportation networks: 1) Ganin et al.'s (2017) urban traffic network 

simulation which estimates travel times given either a predictable disruption (e.g., peak commute 

hours) or andom disruptions and accidents (e.g., natural disasters and major accidents), and 2) 

TranSight (TranSight 4.2 User Guide, 2018), a regional economic forecasting model oriented 

specifically for simulating the outcomes of changes in transportation systems. 

Network Model for Simulating Delays Associated with Disruptions 

Effects of disruptions on an urban transportation infrastructure are quantified with the model 

proposed in Ganin et al. (2017). Specifically, the model assessed travel delays during peak-hours 

for private vehicle commuters in 40 urban areas in the continental U.S. Urban areas are densely 

developed and encompass residential, commercial, and other non-residential urban land uses 

(“2010 Census Urban and Rural Classification and Urban Area Criteria,” 2018). An example of 

the Houston, TX urban area is given in Figure 1. 

In order to study travel delays in each of the urban areas under both normally functioning and 

disruption scenarios, Ganin et al. (2017) first built transportation graphs comprised of 

intersections connected by roadways and then generated trips based on population assigned to 

each intersection. The population assignment was done with Voronoi tessellation and data from 

the U.S. Census Bureau. Trip distribution was accomplished with a modified gravity model and 

only privately-owned vehicle (POV) mode of travel was studied. Route assignment was done 

assuming free-flow speeds on all roadways. Next, based on traffic volumes on each roadway, the 

authors proposed a model that estimated the effective traffic speed. Using those congestion-

based speeds, the authors evaluated the ensuing total annualized travel time. The model was 

subsequently calibrated to match measured data on annualized delay per a peak-hours auto 

commuter as given by the Urban Mobility Scorecard (Schrank et al., 2015). Modeled delays 

were calculated as the difference between travel times under congestion and travel times with 

free-flow speeds. The details of each step of the model development can be found in Ganin et al., 

(2017). 
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Figure 1. Roadway networks of Houston, TX: (A) Congestion patterns at 8 am per Google Maps, 
(B) Modeled delays per kilometer of travel in normal conditions (B) and under 5% disruption (C). 
Purple line shows an approximation of the urban area boundary in panels (B) and (C). 

To characterize the resilience of modeled cities, Ganin et al. (2017) generated disruptive events 

on the transportation networks by disabling links. Resilience was quantified as the additional 

delay resulting from these disruptions. More specifically, Ganin et al. (2017) randomly selected a 

fixed fraction 𝜌 of network links that was made non-functional by reducing their free-flow 

speeds to 1 km/h. Links were selected at random, with probabilities proportional to their lengths 

to account for the fact that longer roads are more likely to be affected by adverse events. Then, 

traffic was redistributed per the updated link free-flow travel times assuming the same origin-

destination demand matrix. Additional delays that resulted from those events were evaluated as 

the difference between annualized travel time with and without a disruption. 

 

Economic Modeling for Insight into Impacts of Transportation Network Changes 

TranSight (TranSight 4.2 User Guide, 2018) is designed to be used with transportation 

forecasting models to translate the outcomes of improvement measures into regional economic 

implications. In this case, instead of forecasting models, the transportation resilience model by 

Ganin et al. (2017) was used to generate additional travel time (delay) that resulted from 

transportation system disruptions. For transportation studies, cost-savings, capital investment, 

and other financial and economic concerns associated with prospective infrastructure projects are 

related to the regional economy via changes to economic variables, which are called “policy 

variables” in the model. These policy variables represent the effect of travel time on individual 

spending on fuel and subsequently their disposable income and consumer spending. 

Additionally, costs to industries were estimated via the extent to which labor demand is met and 

composite price of goods they send to market. All of the linkages between travel times and 

associated costs to the policy variables that are used in regional economic models are detailed in 

(Model Equations, 2017; TranSight 4.2 User Guide, 2018). TranSight can also account for the 

economic effects of changes to emissions, safety, and time saved as a result of transportation 

projects. These effects enter the economy as a change in the non-pecuniary amenity policy 

variable, which accounts for the desirability of an area as a place to live, independent from 

financial concerns such as wage levels. 
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Regional Economic Models Inc., the developer of TranSight and related products, maintains 

regional economic models for a wide variety of U.S. regions and states in order to support 

research. For a particular city or region, economic effects of transportation projects are 

forecasted in economic terms that include gross domestic product (GDP), employment, delivered 

price, commodity access, labor access, and relative cost of production. These are the outputs of 

PI+ Engine, a model that mixes techniques from Input-Output (I-O) and Computable General 

Equilibrium (CGE) modeling, as well as economic geography and econometric techniques 

(Model Equations, 2017). The transportation-economic modeling sequences (TranSight with PI+ 

Engine) typically supports the evaluation of alternative transportation projects and policies.  

The inputs for TranSight include: (a) the change in Vehicle Miles Traveled (VMT), (b) Vehicle 

Hours Traveled (VHT), and (c) vehicle trips attributable to improvement measures. Improvement 

measures include changes to transportation metrics such as average travel velocity (measured by 

divided VMT by VHT) and the average delivery trips to be made in a given amount of time 

(measured by the number of trips divided by VHT).  In TranSight, changes in velocity from the 

baseline scenario to the improvement (test) scenario is formulated as proportional to effect on 

transportation cost and changes in trips that can be made is formulated as proportional effect on 

accessibility cost. Transportation projects were presumed to effect various economic variables 

via changes in “effective distance”, which functions to change travel time, or commuting time 

and expenses. Cost-savings due to reduced travel times accrue to industry firms in the model 

from reduced commuting and transportation costs, and increased access to markets.  

Connecting Transportation Network Resilience and Regional Economic Modeling 

For the specified road network disruption severity 𝜌, quantifying the fraction of affected 

roadways, the network model (Ganin et al., 2017) calculates the resulting average annualized 

travel time 𝑇(𝜌) per a peak-hours commuter. The topological attributes that yield higher or lower 

𝑇(𝜌) values are not called into question in this research. 

We assumed a linear relation between the transportation costs and the travel time, estimating the 

corresponding percent increase in transportation costs 𝑐() as 

𝑐() =
∆𝑇()

𝑇(0)⁄  (1) 

where ∆𝑇() = 𝑇() − 𝑇(0). 

For the purposes of this demonstration, we relied on changes in Gross Domestic Product (GDP) 

as an indication of economic impact for individual cities assessed. We did not probe the specific 

mechanisms of the economies of each city. To quantify the effects of transportation cost increase 

on GDP we utilized the TranSight model, and then generated the relative change in GDP as 

function of disruption severity for the 10 cities of interest. Two scenarios are modelled: 

1) Baseline scenario. Assumes that transportation cost increases are directly proportional to 

road disruption severity : 

𝑐0() ≡ , (2) 

2) Test scenario. Assumes that transportation cost increases are proportional to the 

additional travel time induced by disruption, not to the fraction of roads affected (see 

Equation 1). 
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Results 

Table 1 displays the percent increase in transportation cost computed for different cities at 

specific values of road network disruption severity 𝜌 and serves as the base for subsequent 

analysis of economic implications 

Table 1. Transportation cost 𝒄() increases by city that result from road network disruptions of 
severities varying from 1 to 5 percent. Shown in red are the transportation cost increase values 
exceeding 25%. 

 

We observed that the same disruption results in different cost increases across multiple cities. 

The cost escalated quickly – even at 3% disruption San Francisco exhibits cost increase of 34%. 

Economic impacts of transportation disruption were most pronounced in San Francisco, where 

5% disruption resulted in a 51% increase in transportation costs. Similar disruption in Los 

Angeles resulted in only 9% increase in transportation costs. Jacksonville is the second most 

sensitive city considered, with 44% increase in transportation costs.  

Figure 2 shows the temporal impact of a 5% increase in transportation costs on the GDPs for the 

baseline and test case scenarios. All simulated cities showed significant impact on GDP in the 

year in which disruption occurs (2019) and the residual effect of that shock over the five 

subsequent years was relatively small. All of the cities recover to within 0.2% of their expected 

GDP (simulated GDP in the absence of a shock) by 2020 and have exceeded it by 2023. For 

example, this corresponded to a loss of $250,000 in Atlanta in the year following the shock. The 

profile of the initial impact and recovery was very similar for the test case, yet the magnitude 

was substantially greater, with disruption roughly an order of magnitude worse than the baseline 

case. Notice the difference in the y-axis of the Figure 2 graphs.  
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)  Atlanta 4% 10% 16% 23% 33% 

Detroit 3% 6% 9% 14% 19% 

Houston 5% 11% 16% 24% 32% 

Jacksonville 7% 13% 22% 33% 44% 

Los Angeles 1% 3% 5% 7% 9% 

Miami 4% 9% 13% 18% 23% 

Orlando 4% 9% 14% 20% 26% 

San Francisco 9% 20% 34% 43% 51% 

Seattle 3% 6% 9% 13% 17% 

Tampa 6% 12% 20% 26% 37% 
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Figure 2. Temporal performance of regional economies (as measured by GDP) in response to a 5% 
increase in travel costs that lasted one year (A) and to a 5% transportation network disruption (B). 
Dotted lines show to the lowest, mean, and highest values for each year. Dashed line corresponds 
to zero change in GDP from expected GDP in the absence of disruption. 
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Figure 3. Impact of disruption on GDP (vertical axis scale is logarithmic). The colored bars 
correspond to the baseline scenario with transportation cost increase being proportional to the 

disruption severity  while the transparent bars present the case when transportation costs 
change per travel time increase in response to a disruption.  

 

In Figure 3, GDP changes for the baseline scenario are displayed by the colored bars and those 

for the test scenario are shown with the transparent bars. For both scenarios, GDP progressively 

declined as a function of disruption severity . At the same time, we note that changes in GDP 

due to travel time delays were significantly more consequential than their baseline counterparts. 

In this demonstration, for example, a random disruption of  = 3% of road segments in the San 

Francisco urban area results in 𝑐() = 34% transportation cost increase, which translates to 

6.64% GDP decrease, significantly more than the baseline result of 0.64%. Not all cities show 

such disparate results between the two scenarios. For example, for Los Angeles (the 5th bar), a 

1% roadway disruption increases the travel time by approximately 1% and therefore the GDP 

effects are the same (the transparent and the colored bars completely overlap). 

To find how regional economies of different sizes are sensitive to unpredictable road disruption 

events we compared the percent changes in GDP, ∆𝑔𝑖, due to the random disruptions of  = 5% 

of road segments with the average GDP per capita values 𝐺𝑖 for each of the cities 𝑖 = 1, . . ,10 

(Figure 4). For convenience, we show the mean values of 〈𝐺〉 = $73,422 and 〈∆𝑔〉 = −4.46% 

on each of the axes with dashed lines. The worst response to disruption and a GDP decrease of 

9.5% is found in San Francisco while the lowest GDP decrease of 1.5% is found in Los Angeles 

consistently with cost increases per Table 1. This showed that the GDP changes under road 

disruptions did not correlate with the GDP per capita values under the baseline (no disruption) 

conditions. 
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Figure 4. Scatter plot of GDP per capita and change in GDP per capita in response to a 5% 
increase in transportation costs. The dashed lines indicate the means of the plotted values. 

 

Discussion and Conclusions 

Improving the ability of infrastructure systems to maintain functioning in the face of unexpected 

disruptions (i.e., resilience) is emerging as a high priority in infrastructure planning and an 

objective that has to be balanced against other system performance objectives, including 

efficiency and of transportation networks. Ganin et al. (2017) demonstrated that efficiency and 

resilience are not correlated in the case of 40 U.S. cities. Yet, Ganin et al. (2017) did not assess 

the economic implications of network efficiency and resilience. It is intuitive that the 

implications of disruptive events are not isolated to the infrastructure that is directly impacted 

and yet, the extent that impacts can propagate through regional economies need to be quantified 

to motivate remedial action and inform priorities. Standard practices for how to incorporate 

resilience thinking into planning and management are broadly lacking but, as this research 

demonstrates, there are existing methods can serve to create and process metrics of resilience. 

Here, the network model produces additional delay, which is designated as a metric of resilience 

and is compatible as an input to TranSight.  

This research demonstrates that, in developing the workflow that can support resilience analysis 

and decision making, economic models must be paired with network analysis in order to best 

reflect the impact of disruption on economically important processes, such as commuters 

accessing their workplaces and firms moving their commodities to market. This work dispels the 

viability of the assumption that degree of disruption (i.e., percent of roadways disrupted) should 

be set as proportional to transportation cost increase. As such, one important conclusion of this 
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work is that losses associated with network disruptions may be an order of magnitude higher 

than the size of disruption itself, as evidenced in Figure 3. The model is limited however in that 

the calculated transportation cost increase was applied for a period of an entire year; a finer 

temporal resolution would be preferable. On the other hand, in reality, unexpected delays, can be 

expected to result in disproportionally higher cost increases as compared to expected delays. For 

example, traffic congestion does not disrupt businesses on a day to day basis because it can be 

planned for whereas unforeseen delay cannot be planned around and may cause disruptions that 

hurt businesses.  Because Value of Reliability is not taken into account in the economic model 

used here, the economic impacts of transportation disruption were conservative.  

The finding that economic effects of road disruptions do not scale with the size of city economies 

(in terms of GDP per capita) and that not all of the regional economies in the study are equally 

affected by the adverse events merits future research as to what makes some cities more sensitive 

than others. A naïve expectation is that the larger the economy, the more sensitive it will be to 

transportation infrastructure disruption however, the results of this study point to the likelihood 

that more complex processes are at work. Similarly, cities recover from increased transportation 

costs differently, as shown in Figure 24, which is further evidence of their differing sensitivity to 

disruptions. We can speculate that sensitivity of an economy is dependent on the reaction of the 

transportation network to disruption as well as the dependence of the economy on its 

transportation network. The implication is that both region-specific economic and transportation 

models are necessary for resilience planning. Future work should explore the driving factors of 

uneven outcomes across cities, namely the reasons for transportation network sensitivities to 

disruption as well as local economy sensitivities to transportation failures and ability to recover. 

Additionally, future work can advance areas in which this study was limited and move the 

method toward practical application in transportation planning. For example, the topological 

attributes of road networks that yield more or less delay are not called into question in this 

research. Similarly, the mechanisms by which network disruptions cause economic impact in the 

results are not investigated. Efforts to enhance the resilience of road networks to disruption 

and/or the regional economy to lack of road network resilience will need to study the outcomes 

of the models in detail. Rose (2017) gives a comprehensive overview of the challenges faced in 

accounting for the economic impacts of disruption including that of translating damaged public 

infrastructure into broader economic loses. Other limitations include that the network models 

that underpin delays do not currently incorporate public transportation options, a significant 

mode in some cities, most notably New York City. Similarly, the traffic model is intentionally 

abstract and simple and only uses publicly available data sets and economic variables have a 

time step of one year. 

Additionally, the current model does not differentiate between the expected travel times, 

variance of everyday traffic and unpredictable delays. Future work should investigate how to 

integrate potential methods of measuring the Value of Reliability, separate from expected travel 

times, as well as how unexpected delays may best have their costs modeled and integrated. 

A key motivation of this research is to highlight that efficiency, risk reduction and resilience are 

different objectives. Pairing process models with economic simulation should stimulate greater 

attention to the differences between these objectives. Although the outcome of disruptive events 

is delay, and sometimes much more pronounced delay than routine congestion, they cannot be 

prevented solely by efficiency improvement or risk reduction; planning for resilience is 

functionally different than planning for efficiency (Ganin et al., 2017). Risk reduction can have 

limited success for uncertain events. For example, in flow networks, such as transportation 
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systems, efficiency may be achieved by having sufficient roadway capacity, while resilience can 

result from the availability of, potentially not very efficient, alternative routes, which would 

ensure graceful performance degradation under disruption as opposed to a complete collapse. As 

this paper demonstrates, the consequence of neglecting to plan for disruptive events from a 

resilience perspective is disproportionate impact to both the primary system and the connected, 

dependent economy. 
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