

THE ECONOMIC & FISCAL IMPACTS OF THE OIL & GAS GLUT

REMI Webinar May 14th, 2020

> Presented by Dr. Peter Evangelakis & Chris Judson

About REMI

REMI's 39-year history of rigorous academic research and software development has led to the development of the state of the art model in macroeconomic research methodology:

Input-Output Close analysis of inter-industry relationships

Econometrics

Advanced statistical analyses underpinning the model

General Equilibrium

Estimate of long-run stability of the economy allows for analysis of policy decisions

Economic Geography

Effects of geographic concentration of labor and industry

Business

The Voice of Small Business

Roundtable[®]

Sandia

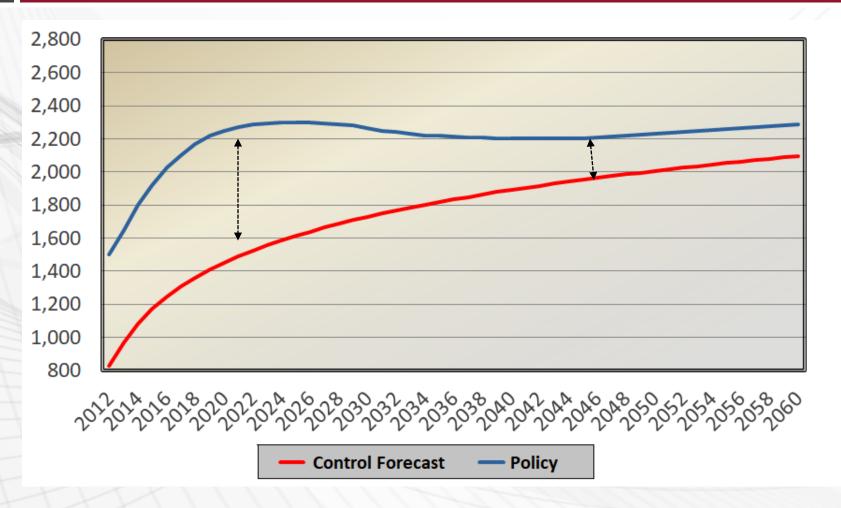
National

Laboratories

California Environmental Protection Agency

Integrated REMI economic modelling

approach


US Army Corps of Engineers®

Economic Impacts of Continued Low Oil Prices

- Decrease in economic activity for in oil and gas production
 - Loss in regional and national tax revenues
 - Direct loss in oil/gas sector employment within producing economies
 - Supply chain and other demand responses spread across regional, state and national economies

Example Study – Oil & Gas Industry Output Reduction

Source: "Increasing the Oil and Gas Setback Requirement to 2,500-feet in Colorado" July, 2018 - Common Sense Policy Roundtable

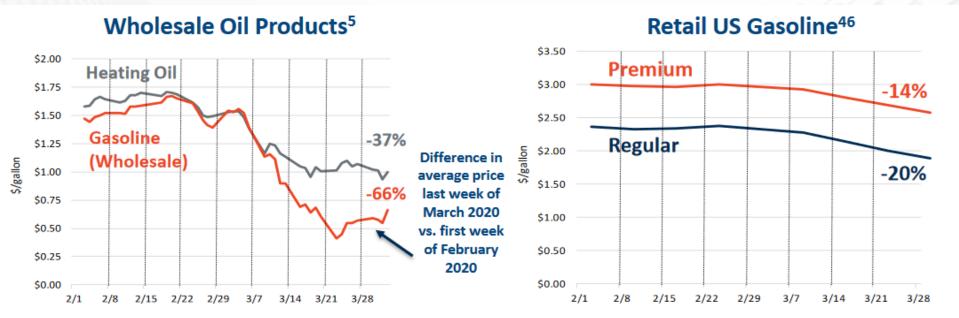
TABLE 1: SUMMARY RESULTS TABLE

Economic and Fiscal Impacts of Proposition 112 Summary Results Table						
10% Displacement	2019	2030	2019-2030			
% of New Production Loss	-80%	-80%	80%			
% of All Production Loss	-22%	-70%	57%			
Employment (Units)	-43,000	-147,800	-109,500			
GDP (Billion 2018\$)	-\$6.216	-\$26.312	-\$217.926			
Tax Revenue (Million 2018\$)	-\$258.47	-\$1,060.55	-\$9,020.31			
30% Displacement	2019	2030	2019 - 2030			
% of New Production Loss	-62%	-62%	62%			
% of All Production Loss	-17%	-54%	44%			
Employment (Units)	-33,500	-115,000	-85,200			
GDP (Billion 2018\$)	-\$4.836	-\$20.462	-\$169.486			
Tax Revenue (Million 2018\$)	-\$201.03	-\$824.87	-\$7,015.80			

Source: "Increasing the Oil and Gas Setback Requirement to 2,500-feet in Colorado" July, 2018 - Common Sense Policy Roundtable

Average Price of Gasoline (Historic View)

DOWNLOAD


Weekly U.S. All Grades Conventional Retail Gasoline Prices

Source: U.S. Energy Information Administration

Gasoline Prices

Source: S&P Market Intelligence, as of April 3, 2020.

Source: EIA, as of April 3, 2020

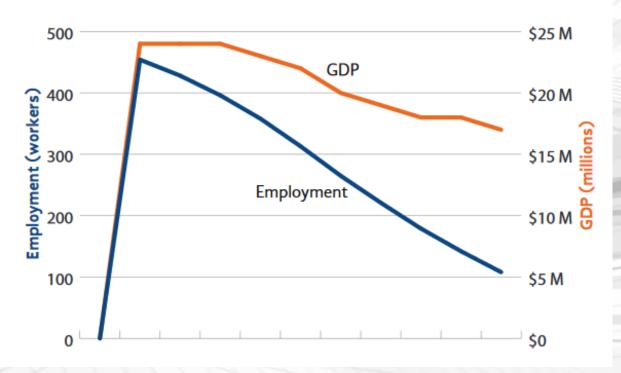
Source: "Impact of COVID-19 on the US Energy Industry, February/March Assessment" - The Brattle Group April, 2020

State Losses in Gas Tax Revenue

Rainy day funds and borrowing are intended to cover short-term losses in state funding. New sources of revenue most be considered, compared to loss in infrastructure maintenance and new investment.

what does **REMI** say? sm

Table 4: Selected States' Annual Fuel Tax Revenue, FY 17 (in \$ thousands)


State	Revenue
Connecticut 1	484,479
Delaware ²	129,500
Maine ³	253,176
Massachusetts ⁴	770,984
New Hampshire ⁵	124,477
New Jersey 6	562,017
New York 7	519,000
Pennsylvania ⁸	1,732,660
Rhode Island ⁹	151,910

Source: "Toll Revenue, Gas Taxes, and Gas Prices in Selected States" Connecticut Office of Legislative **Research Objective Research for Connecticut's** Legislature - January, 2018

Hypothetical Increase in Gasoline Taxes

Figure 5. Net Employment and GDP Effect of a 5-Cent Increase in Gasoline Excise Tax (2015-2025) Source: Author calculations

Source: Ball State University, Center for Business and Economic Research Economic Brief, February, 2016.

The Type of Financing Matters Stakeholders & KPIs Changes Preferences

"The Economic Impact of RhodeWorks: An Accelerated Transportation Restoration Plan" – REMI 10/2015

- S1 Full 6/10 Highway and Transit Project, Bride Tolling only
- S3 Full 6/10 Highway and Transit Project, Bride Tolling and 50% Gasoline Tax
- S5 Full 6/10 Highway and Transit Project, Bride Tolling and 50% Diesel Tax
- S7 Full Project, 50% Bridge Tolling, 50% Gas and Diesel Tax

Table 1: Summary Results Total Impact 2015-2025 – Difference from Baseline

Metric	<u>Units</u>	<u>S1</u>	<u>S2</u>	<u>S3</u>	<u>S4</u>	<u>S5</u>	<u>S6</u>	<u>S7</u>	<u>S8</u>
Total Employment	Individuals	<mark>6,4</mark> 87	3,194	6,656	3,363	6,143	2,850	6,399	3,106
Gross State Product	Millions of Current \$	<mark>\$ 5</mark> 38	\$ 225	\$ 560	\$ 247	\$ 500	\$ 187	\$ 530	\$ 217
Output	Millions of Current \$	<mark>\$</mark> 963	\$ 408	\$ 1,010	\$ 455	\$ 908	\$ 353	\$ 959	\$ 404
Personal Income	Millions of Current \$	<mark>\$ 521</mark>	\$ 241	\$ 510	\$ 230	\$ 485	\$ 206	\$ 498	\$ 218
Real Disposable Personal Income	Millions of Current \$	\$ 344	\$ 129	\$ 263	\$ 47	\$ 287	\$ 71	\$ 275	\$ 59
Population	Individuals	4,340	2,184	3,443	1,288	3,675	1,519	3,558	1,402

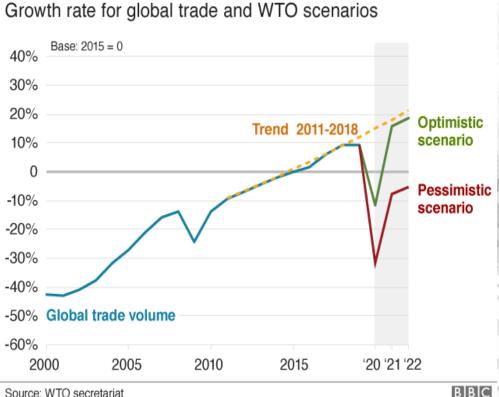
Labor Force Training May Be Necessary to Fill Gap

The National-Level Economic Impact of the Manufacturing Extension Partnership (MEP) - W.E. Upjohn Institute for Employment Research, March 2017

Forecast	Jobs	GDP	Output	\$ Personal Income	Returns to Treasury	ROI Return on Investment
Unconstrained Model Using Industry Variables	575,870	\$63.04*	\$130.15 [*]	\$34.64*	\$4.66*	35.8:1
Constrained Model Using Firm Variables	142,381	\$15.40 [*]	\$29 . 89*	\$8 . 44*	\$1.13 [*]	8.7:1
11.5% Solution Using Firm Variables	16,532	\$1.79 [*]	\$3.46*	\$. 98*	\$.132 *	1:1

Dollars in billions

Ran three different simulations in REMI to evaluate impacts on performance indicators. Sensitivity analysis provided: 1) best case scenario assuming no competition (unconstrained) net new growth; 2) constrained scenario assuming some crowding out would occur and 3) level of economic activity needed to breakeven.


Methods to Model Regional Effects of COVID-19

Change Employment, 1. **Output, Labor Productivity,** by Industry

- **Consumer spending** 2.
- Supply chain effects 3.
- **Global demand impacts** 4.
- 5. Mortality rate impacts

World Trade set to plunge

Source: WTO secretariat

Model Demonstration

Potential Benefits to Sustainable

- Downstream industry production
- Increase in real disposable income
- Lower production costs, particularly for transportation sectors
- Excess regional capacity could be good for exports, i.e. LNG exports

Each negative and positive impact has dynamic ripple effects.