

Econom ic Impacts of Advanced Clean Cars II

REM IUsers' Conference 2023

Cincinnati, O H

Tony O liver, Ph.D.

and Desize Porzio

AR

The California Air Resources Board

- CARB is charged with protecting the public from the harm fuleffects of airpollution and developing program s and actions to fight climate change.
- From requirements for clean cars and fuels to adopting innovative solutions to reduce greenhouse gas emissions, California has pioneered a range of effective approaches that have set the standard for effective air and climate programs for the nation, and the world.
- 16 m em berboard, with 12 appointed by governor and 4 for bcalairdistricts

Regulations

- The Advanced C lean C ars II regulations will rapidly scale down emissions of light-duty passenger cars, pickup trucks and SUVs starting with the 2026
 - Zero-em ission Vehicle Regulation to require an increasing num ber of zeroem ission vehicles
 - Low -em ission Vehicle Regulations were am ended to include increasingly stringent standards for gasoline cars

Standardized Regulatory Impact Assessment

- A comprehensive assessment of the costs, benefits, fiscal and macroeconomic impacts of a major regulation in the State of California.
- Major regulations are a defined as anything with an annual total econom ic > \$50 m illion

Baseline

- Econom ic Regulation are evaluated against a baseline scenario each year for the analysis period from 2026-2040
- Existing requirem ents are accounted for, including the Low Carbon FuelStandard (LCFS), the electricity Renewable Portfolio Standard (RPS), and the bnger-term requirem ents of the 100 Percent C lean Energy Act of 2018 that requires electricity be supplied by zero-carbon sources by 2045.
- New vehicle sales forecast is based on CARB'S EM FAC model, which projects about 1.9 m illion new light-duty vehicles sold peryear.

Direct Costs

- Estimates of direct costs are estimated of two main components:
 - Vehicle manufacturer cost:
 - Increm entalcost of additionalZEVs are estim ated based on least cost com pliance pathway.
 - Cost are assumed to be passed on to consumers
 - TotalCostofOwnership (TCO):
 - Fuelcost (gasoline, electricity, and hydrogen)
 - Recurring cost (maintenance, insurance, registration, vehicle to-grid)

Statew ide TotalCost of Ownership

- Costitems:
 - Increm entalvehicle cost
 - Electricity/Hydrogen cost
 - Registration cost
 - Insurance cost
- Cost-Savings
 - Gasoline
 - Maintenance & Repair
 - Vehick-to-grid

Cost to Individuals

- TotalCostOwnership estimated for initial purchase in 2026
- Breakeven for a typical driver occurs within 6-7 years

TotalCost of Ownership in 2026 for a BEV300

Health Benefits M onetization

In proved air quality leads to in proved health outcom es

Sum mary of Valuation for Avoided Health Outcomes (2023-2040)

O utcom e	Value per Incident	TotalAvoided	TotalHealth
	(2020\$)	Incidents	Benefit
Avoided Premature Mortality	\$10,030,076	1,287	\$12.91 billion
Avoided Cardiovascular Hospitalizations	\$59 , 247	211	\$12.5 m illion
Avoided Acute Respiratory Hospitalizations	\$51,678	252	\$13.0 m illion
Avoided Emergency Room Visits	\$848	647	\$549,000
Total			\$12.94 billion

Health Benefits REM I Inputs

- ConsumerSpending variable
 - Modeled as reallocation from hospitals to other sectors
- Labor Productivity variable
 - Work bss days converted to increase in aborproductivity using REM I's baseline Employment and Output values
 - The percentage change in aborproductivity is applied to all industries

Econom ic M odeling

- The single region (California) 160-industry model was used to evaluate econom ic in pacts
- Updates to both the Nationaland California baseline forecast are performed

Econom ic M odeling

- Increm entalVehicle costs modeled as an increase in Consum er Price
- O perational costs m odeled as changes to Consum er Spending.
- Health benefits reduce consumer spending
- Fiscal in pacts of bss of gasoline tax revenue, reduce governm ent spending

Source of Costor Savings	Industries with	Industries with Changes in
	Change in	FinalDem and (NAICS)
	Production Cost	
	orPrices	
	NACS)	
Vehicle prices and charging		Upfiont cost: Electrical
plug		componentm fg.ª (3353)
Vehicle maintenance and repair		Recurring cost:
		Autom otive repair and
		m aintenance (8111)
Gasoline		Recurring cost: Petroleum
	Individuals,	and coalproducts m fg.
	Businesses, and	(324), retailtrade (44-45)
	Governm ent	and wholesale trade (42),
	purchasers of	and oiland gas extraction
	new vehicles	211).
Electricity		Recurring cost: Electric
(including V2G savings)		powergeneration,
		transm ission and
		distribution (2213)
Hydrogen		Recurring cost: Basic

Macroeconom ic Impacts

Industry Im pacts

- Petroleum products m fg.sees large decrease in O utput, but relatively sm all job in pact
- Automotive repair has large in pact: ~20% reduction in jobs

- Retailtrade sees large absolute in pact: 39,000 jobs foregone
- State and LocalG overnm ent jobs reduced due to fiscal in pacts of decreased gas tax revenues

Fiscal Im pacts

- State and LocalG overnm ent tax revenues reduced
 - State: G asoline excise tax reduced by \$15.2 billion, but partially offset increased registration and license fee revenue or \$12.1 billion
 - Local: G asoline sales and excise tax revenue reduced by about \$20 billion, som e offset from Utility User Fees (\$5 billion)
- Suggest large in pact to governm entprogram s and jobs, if not offset by other revenues

Cost-Benefit Analysis

Sum m ary of Im pacts

- TotalCosts of over \$200
 billion, but this is outweighed
 by cost-savings of over \$300
 billion.
- Non-marketbenefits of \$13 billion in California.
- Inclusion of the SocialCost of Carbon increase net benefits by \$9.7-\$41.2 billion
- Job im pacts less than 0.4% of baseline employment

CARB

Cost and Benefits from 2026-2040 (Billion 2020\$)

Total Costs	\$210.35
Cost Savings (benefit)	\$303.24
Health Benefits	\$12.94
Tax and Fee Revenue	(\$14.76)
Total Benefit	\$301.41
Net Benefit	\$91.06
Benefit-Cost Ratio	1.43