

OBBBA Reducing Transportation Funds: Economic Analysis using REMI-AI

Nigel Ma Economics Assistant Intern Senior Economics Intern Economics Assistant Intern

Owen Karpeles

Teddy Sun

Regional Economic Models, Inc.

Agenda

The "Big Beautiful Bill" and Transportation

Impact of First-Mile Transit

Input Methodology: REMI TranSight and REMI AI

Analysis Output from TranSight and REMI Al

Conclusion

Q&A

What is the One Big Beautiful Bill Act (OBBBA)?

Taxes & Economy

- Cuts corporate tax (21% to 15%)
- Reduces capital gains, estate taxes
- Aims to stimulate business investment with deregulation

- Encourages faster project approval
- Private sector involvement
- Reduces power of federal agencies

Energy & Environment

- Eliminates EV and renewable energy tax credits
- Roll back clean energy programs
- Expands oil and gas drilling

National Priorities & Security

- Redirects funding to "America First" priorities
 - Border control, domestic production, etc.

The Big Beautiful Bill's Impact on Transportation

Reallocation of Funds

• The bill shifts funding priorities to roads, bridges, air traffic control, and maritime infrastructure

Metro Funding Cuts

- The bill repeals federal authorization for the Capital Investment Grants program used for large transit projects
- The bill cuts discretionary funding for the RAISE program used for multimodal hubs and **first/last mile projects**

More Funding at Risk

 Transportation Secretary Sean Duffy has threatened to cut funding to states who do not cooperate with ICE

Agenda

The "Big Beautiful Bill" and Transportation

Impact of First-Mile Transit

Input Methodology: REMI TranSight and REMI AI

Analysis Output from TranSight and REMI Al

Conclusion

Q&A

"First-Mile Access Transit"

- "First-Mile" (FM) and "Last-Mile" (LM): the **first/final segment** of a trip (common forms: walking, cycling, **transit**)
- Our study focus: projects extending public transit to improve FM convenience
 - Expanding core transit network to connect the previously disconnected/relatively less connected regions
 - What's the impact of (potentially) cutting off these projects under the context of the Big Beautiful Bill?

Theoretical Importance of First-Mile Access Transit

People can be discouraged from using transit because they can't easily reach it

Low-income, elderly, and disabled riders are most affected by poor first-mile options Making transit accessible can improve safety & reduce car trips

Transit projects bring ridership, leading to increased revenue generation

Comparative Cases between 3 Metropolitan Areas

New York: Interborough Express

- 14 mi light rail project
- Brooklyn Queens
- Planning

Chicago: Red Line Extension

- 5.6 mi metro extension
- 95th 130th Street
- Planning/Pre-Construction

Los Angeles: East San Fernando

- 6.7 mi light rail project
- San Fernando Van Nuys
- Planning/Pre-Construction

^{*}Project selection rationale: (1) connecting previously less-connected neighborhoods; (2) during the planning/pre-construction stage to balance information availability with the flexibility of travel demand estimation

Agenda

The "Big Beautiful Bill" and Transportation

Impact of First-Mile Transit

Input Methodology: REMI TranSight and REMI AI

Analysis Output from TranSight and REMI Al

Conclusion

Q&A

Model Simulation: REMI TranSight

TranSight is the premier software solution for comprehensive evaluations of the total economic effects of transportation policy.

Grounded in over 20 years of modeling experience, decision-makers depend on TranSight to forecast the short- and long-term impacts of transportation investments on jobs, population, income, and other economic variables

Assumptions of Analysis

Variable	Vehicle Miles Traveled	Vehicle Miles Traveled Vehicle Hours Traveled		
Source/ Formula	Public Info, Research & Reports	$VHT = \frac{VMT}{Avg. Speed (mph)}$	$V_{\text{Trips}} = \frac{VMT}{Avg. Trip Length (mi)}$	
Variable	Railway Miles Traveled	Railway Hours Traveled	Railway Number of Trips	
Source/ Formula	Public Info, Research & Reports	$RHT = \frac{RMT}{Avg. Speed (mph)}$	$R_Trips = \frac{RMT}{Avg. Trip Length (mi)}$	

Variable	Vehicle Average Speed (mph)			Vehicle Average Trip Length (mi)					
Location	NYC	СНІ	LA	NYC	CHI	LA			
Assumed Value	16.1	12.8	19.6	7.9	5.9	9.3			
		Rail Average Speed (mph) Rail Average Trip Length (mi)							
Variable	Rail	Average Speed (r	mph)	Rail A	verage Trip Lengt	th (mi)			
Variable Location	Rail NYC	Average Speed (r CHI	nph) LA	Rail A	verage Trip Lengt CHI	th (mi) LA			

Model Inputs: TranSight

Origin	Destination	Year	Auto_Trips	Auto_VMT	Auto_VHT	LightRail_Trips	LightRail_VMT	LightRail_VHT
1	1	2026	0	0	0	0	0	0
1	1	2027	baseline	baseline	baseline	baseline	baseline	baseline
Origin	Destination	Year	Auto_Trips	Auto_VMT	Auto_VHT	LightRail_Trips	LightRail_VMT	LightRail_VHT
1	1	2026	0	0	0	0	0	0
1	1	2027	adjusted	adjusted	adjusted	adjusted	adjusted	adjusted

- TranSight travel demand module is compatible with .csv input datasets
- Inputs generated through a "baseline" scenario and "adjusted" scenario typically reflecting a non-investment vs. Investment situation to show the effects of transit infastructure
- Key variables for travel demand modeling: # trips + vehicle miles traveled (VMT) + vehicle hours traveled (VHT) disaggregated by mode of transportation

Model Inputs: TranSight

Save F	oreca	ast Import	Export Print Tools			Select Inpu	uts <u>In</u>	puts List		Foreca	ast Optio	ns	R	esults	
1	Policy Variable Inputs														
Acti	Active Edit Group														
	v (/ 🞇 🔞 Ti	ravel Demand												
	Ac	tive Group													
		✓ Travel [Demand - Emissions												
Ш		Active View		Detail	Region	Unit	ts	2023	2024	2025	2026	2027	2028	2029	2030
Ш		□	Non-Pecuniary (Amenity) Aspects	Total	District 1	2017	7 Fixed National \$ (M)	0	0	0	0	-0.0798787	-0.2242776	-0.3686764	-0.513075
		<		III.											>
			Demand - Leisure Time												
		Active View		Detail	Region	Unit		2023	2024	2025	2026	2027	2028	2029	2030
		_	Non-Pecuniary (Amenity) Aspects	Total	District 1	2017	7 Fixed National \$ (M)	0	0	0	0	61.0616408	54.4829461	67.4108462	72.612604
				III											>
			Demand - Safety Costs	T	I										
		Active View		Detail	Region	Unit		2023	2024	2025	2026	2027	2028	2029	2030
▶			7 7 7	Total	District 1	2017	7 Fixed National \$ (M)	0	0	0	0	-21.143350	-35.238917	-49.334484	
				III											>
			Demand - Operating Costs	I											
		Active View		Detail	Region	Unit		2023	2024	2025	2026	2027	2028	2029	2030
				Motor vehicle fuels, lubricants, and fluids	District 1		7 Chained National \$ (M)	0	0	0			-1.9568047		
		<u></u>	, ·	<u> </u>	District 1	2017	7 Chained National \$ (M)	0	0	0	0	1.95680472	1.95680472	1.95680472	
															>
			Demand - Effective Distance						I	1					
		Active View		Detail	Region	Unit		2023	2024	2025	2026	2027	2028	2029	2030
			Commuting Costs - Immediate Market Share Respon		Interregional	Prop	portion	0	0	_			-0.0001445		
			Accessibility Costs	District 1 to District 1	Interregional	Prop	portion	0	0	0	0	-0.0013567	0.00023493	-0.0027310	-0.003802
		✓ Q	Transportation Costs	District 1 to District 1	Interregional	Prop	portion	0	0	0	0	-0.0039215	-0.0039215	-0.0039215	-0.002204
		<		II											>

Model Simulation: REMI AI

REMI-Al is the next evolution in policy analysis. This tool streamlines your workflow by generating high-quality deliverables—a one-pager, a PowerPoint presentation, and a comprehensive report—directly from your model results.

Built with the newest and most secure artificial intelligence technology, REMI-AI relies exclusively on REMI model documentation and equations, ensuring accuracy and reliability without pulling information from external sources.

Report generator

Generate a custom economic report.

One-pager

Develop an overview of the impacts of policy for your team.

PowerPoint generator

Create an insightful and digestible slide deck.

Virtual economic assistant

Get modeling assistance on demand.

REMI AI Application

Put yo	our Simulation in Context	
Title you	ur Report	
Regiona	al Simulation 1 Report 2	
Describe	e your Simulation (Recommended)	
	nulation demonstrates the regional economic benefits of investing in First-Mile nfrastructure in the city of Chicago.	
Describe	e your Policy Variables (Recommended) 🕜	
Active	Group	Notes
V	Travel Demand	TDM Data representing the changes as a result of the new infrastructure

REMI AI Application

REMI AI Application

REMI

- Template of REMI
 TranSight Al output
- Pulls key results indicators out of model and generates comprehensive editable one-pager

Agenda

The "Big Beautiful Bill" and Transportation

Impact of First-Mile Transit

Input Methodology: REMI TranSight and REMI AI

Analysis Output from TranSight and REMI Al

Conclusion

Q&A

Key Economic Results: Foregone Output

- Exponential Extrapolation: based on research (Lin et al, 2024) and past REMI client experience, transit systems usually take ~10-15 years to reach full ridership capacity
 - Hence, we assume ridership to grow exponentially at a slow rate (population growth) from 2027-2040
- GDP Trends: value-added to the economy by 2060

• NYC: 2.8B

Chicago: 2.0B

• LA: 1.7B

- Consistent positive contributions over the forecast period
- J-shape line: initial benefit expansion network benefit

Key Economic Results: Foregone Employment

- Exhibited similar growth trend as GDP: Initial benefit, expansion, and network benefits
- Employment creation: Jobs created by 2060

• NYC: 21K

• Chicago: 12K

• LA: 12K

- Different growth patterns: response of regional-specific parameters & regional input-output matrix to shocks
 - NY assumed higher population density slightly quicker expansion even after 2040
 - LA county's employment is more responsive to travel demand increases faster growth in initial phases

Key Economic Results: Impact as a Percentage of Total

- We can see by how much does GDP & employment change relative to the inherent size of the economy
- CHI demonstrates a higher GDP added as a % of total GDP due to its smaller size compared to NY
- By 2060 GDP and employment increases by:
 - o NYC: 0.15% of total GDP and 0.26% of total employment
 - o Chicago: 0.17% of total GDP and 0.18% of total employment
 - o LA: 0.12% of total GDP and 0.14% of total employment

Key Economic Results: Foregone Demographic Benefits

- Population & labor force both increase in response to a hypothetical transportation project construction
 - Improvement in travel efficiency attracts "economic migrants" from other nearby regions
 - Increased employment -> immigrant attractiveness -> increased employment (positive feedback loop!)
 - Birth rate is not significantly shocked in response to transportation projects
- (Marginal) labor force participation: increased first, then decrease & **converge** to the 3 regions' respective long-run labor participation rate (60%-65%)
 - Economic migration happens upfront in a transportation project scenario

Key Economic Results: Foregone Travel Efficiency

- REMI TranSight model tracks many transportation-specific indices that capture travel efficiency effects. E.g.:
 - Commodity Access Index (CAI): measures the change to access to specialized inputs
 - Labor Access Index (LAI): measures the workplace's access to workers & workers' access to workplace
 - Relative Cost of Production (RCOP): cost of local production using composite input prices & labor cost
- CAI & LAI increase: improved transportation increases access of commodity & labor -> economic efficiency
- RCOP decrease: improved accessibility lowers input & labor costs
 - All 3 variables increase/decrease at a decreasing rate: the diminishing marginal returns

Summary: Compare & Contrast

	New York	Chicago	Los Angeles
Observations	 Largest flat GDP & employment increases Most obvious J-curve shape Largest increase in CAI, LAI 	 Medium flat GDP & employment increases Smallest marginal labor participation changes 	 Smallest flat GDP & employment increase But relatively large labor force, CAI & LAI increase
Potential Explanation	 Largest project Largest population & population density Large transit elasticity -> significant network effects 	 Second-largest project Smaller regional population density -> smaller labor force/participation change Medium transit elasticity 	 Smallest project, but still close to Chicago Input-output relationships Largest transit elasticity -> fastest growth phase

Agenda

The "Big Beautiful Bill" and Transportation

Impact of First-Mile Transit

Input Methdolology: REMI TranSight and REMI AI

Analysis Output from TranSight and REMI Al

Conclusion

Q&A

Conclusion

- Funding threat for upcoming transportation projects
- People have less access to public transportation due to funding cuts

Effect on Transportation

- Foregone output, job, demographic, efficiency benefits
- Regional differences driven by intrinsic locational factors

REMI's Role

- Quantify the impact of given policy changes
- Address stakeholders with evidence of how policy benefits/harms their communities broadly

Thank you for attending!

For more information, please contact:

Nigel.Ma@remi.com

Owen.Karpeles@remi.com

Theodore.Sun@remi.com

info@remi.com